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Abstract

Longwall mining alters the fluid-flow-related reservoir properties of the rocks overlying and underlying an extracted panel due to
fracturing and relaxation of the strata. These mining-related disturbances create new pressure depletion zones and new flow paths for
gas migration and may cause unexpected or uncontrolled migration of gas into the underground workplace. One common technique to
control methane emissions in longwall mines is to drill vertical gob gas ventholes into each longwall panel to capture the methane
within the overlying fractured strata before it enters the work environment. Thus, it is important to optimize the well parameters,
e.g., the borehole diameter, and the length and position of the slotted casing interval relative to the fractured gas-bearing zones.

This paper presents the development and results of a comprehensive, “dynamic,” three-dimensional reservoir model of a typical
multi-panel Pittsburgh coalbed longwall mine. The alteration of permeability fields in and above the panels as a result of the mining-
induced disturbances has been estimated from mechanical modeling of the overlying rock mass. Model calibration was performed
through history matching the gas production from gob gas ventholes in the study area. Results presented in this paper include a simulation
of gas flow patterns from the gas-bearing zones in the overlying strata to the mine environment, as well as the influence of completion
practices on optimizing gas production from gob gas ventholes.
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1. Introduction only temporarily during mining with hydraulic supports

that protect the workers and the equipment on the face. As

Longwall mining is an underground mining method
that can maximize coal production in coalbeds that are
continuous with few geological discontinuities. In these
operations, a mechanical shearer progressively mines a
large block of coal, called a panel, which is outlined with
development entries or gate roads. This is a continuous
process in an extensive area, where the roof is supported

the coal is extracted, the supports automatically advance
with the rate of mining, and the roof strata are allowed to
cave behind the supports.

It has been suggested (Singh and Kendorski, 1981;
Palchik, 2003) that the caved zone (Fig. 1) created by
longwall mining is highly fragmented, and generally ex-
tends upwards three to six times the thickness of the mined
coalbed. In this zone, the overlying rock layers fall into the
mine void and are broken into irregular shapes of various
sizes. It has been found that the height of the caved zone
could reach four to eleven times the thickness of the mining
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Fig. 1. Schematic of strata response to longwall mining (modified from Singh and Kendorski, 1981).

height where overburden rocks are weak and porous
(Palchik, 2003).

Above the caved zone is a fractured zone (Fig. 1)
characterized by mining-induced vertical fractures, and
horizontal fractures caused by separations along bedding
planes. The caving of the mine roof causes an area of
relieved stress in this zone. The blocks in each of the broken
rock layers are contacted either fully or partially across the
vertical fractures, with the number and extent of the frac-
tures diminishing with increasing height above the caved
zone. The thickness of the fractured zone can vary up to 100
times the height of the mined coalbed, depending on the
characteristics of the associated rock strata, thickness of the
overburden, and the size of the longwall panel (Palchik,
2003).

The occurrence of such an extensive area of mining-
induced stress relief and resultant rock damage changes the
gas flow-related properties in the overlying (and in some

cases the underlying) strata, particularly the permeability.
Any gas that is contained within the coalbeds in this area of
relieved stress will be released slowly over time, while free
gas in other porous formations, such as sandstones, will be
released more quickly, as the permeability of these zones is
dramatically increased and new permeability pathways are
created. Relaxation of the roof and floor rocks and the
associated fracture connectivity allows gas to flow from all
surrounding gas sources toward the low-pressure sink of
the underground workings, including the caved zone. Fig. 2
shows a super-critical longwall panel, where the panel
width is larger than overburden thickness, and flow paths
for gas migration to the active mine workings and gob gas
ventholes after subsidence. Gas-bearing strata, particularly
overlying gas-bearing coalbeds and sandstones, can be
directly exposed to the caved zone or connected to it by
fractures. In the absence of methane drainage boreholes
such as gob gas ventholes, this released gas, commonly
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Fig. 2. Schematic of a supercritical panel situation and the gas migration paths.



referred to as “gob gas” may enter the mine atmosphere
from above.

In general, experience suggests that it is difficult to
make accurate gas production estimates for gob wells and
that these predictions are underestimated relative to actual
gob gas venthole production by a factor of two or more.
The key factors to this underestimation of gas production
capability are the difficulty in predicting the degree of
stress relief in gas-bearing strata associated with longwall
mining and, consequently, the drainage radius for each
well (Zuber, 1998). To better understand the flow of gas in
the longwall mining environment, a reservoir modeling
study was initiated for a mining area in the Pittsburgh
coalbed in southwestern Pennsylvania for which the
National Institute for Occupational Safety and Health
(NIOSH) had a substantial data set for gob gas production.

1.1. Longwall gob gas ventholes

Gob gas ventholes are drilled into the overburden
above longwall panels to capture the gas released from the
subsided and relaxed strata before it enters the mining
environment, where it can be an explosion hazard. Most
gob gas ventholes are drilled within a short distance, 10—
30 m (30 ft—100 ft), of the coalbed being mined and cased
with steel pipe. Commonly, the bottom section of the
casing [generally about 60 m (200 ft)] is slotted and placed
adjacent to the expected gas production zone in the
overburden strata. The usual practice is to drill the gob gas
ventholes from the surface prior to mining. As mining
advances under the venthole, the gas-bearing strata that
surround the well will fracture and establish preferential
pathways for the released gas to flow towards the
ventholes (Diamond et al., 1994).

Exhausters are placed on gob gas ventholes to maintain
a vacuum on the wellbore, so that they operate at the
minimum possible flowing pressure and create a pressure
sink in the overburden strata to induce gas flow towards
the venthole. Gas production may exhibit variable gas
quality. In the early stages of production, the gas quality is
generally high (>80%), and there is very little contam-
ination by mine ventilation air. Maximum daily methane
production generally occurs within the first several days
after a hole is intercepted by the longwall. Relatively high
production rates are usually sustained for only a few
weeks or in some cases for a few months (Diamond et al.,
1994). Later in time, gob gas production may exhibit
decreased methane levels as ventilation air is drawn from
the active mine workings.

The quality of the gas from gob wells can be controlled
to some extent by varying the vacuum on the well to
correspond with the profile of expected methane release.

However, for mine safety, maintaining the methane con-
centration in the mine within statutory limits is always the
overriding factor for controlling the vacuum on the gob gas
ventholes, as it is for all other mine-related methane
drainage systems (Zuber, 1998; Mucho et al., 2000).
Commonly, when the methane concentration in the
produced gas reaches 25%, the exhausters are de-energized
as a safety measure, and the holes may be allowed to free
flow.

The location of the ventholes on the panel is important,
as Diamond et al. (1994) showed in a study of a Lower
Kittanning coalbed longwall mine where the holes on the
ends of the panels were generally the highest-quantity and
longest-duration producers. This was attributed to
enhanced mining-induced fractures on the ends of the
panels where the overburden strata are in tension on three
sides due to the support of the surrounding pillars. This
observation led to the experimental placement of gob gas
ventholes in the zone of tension along the margin of a
panel, instead of in the traditional centerline location,
which is in compression due to subsidence and re-
compaction of the longwall gob. Analysis of seven
months of gas production data indicated that the
experimental near-margin holes produced 77% more gas
than did centerline holes on the same panel (Diamond
et al., 1994).

Improvements in venthole gas drainage evaluation and
prediction capabilities for site-specific mining conditions
and circumstances can address longwall gas emission
issues, resulting in ventholes designed for optimum
production and mine safety. To improve gas capture at a
reasonable cost, it is important to understand the behavior
of the entire gob gas venthole system, including the
venthole placement and completion strategies, the
reservoir properties of the gob in the caved zone behind
the face, the fractured rock mass around the workings,
and, finally, the ventilation system. A theoretical reservoir
modeling approach is the best, if not the only means to
predict methane emissions in advance of mining (Noack,
1998) under varying conditions and to design drainage
systems accordingly for either reducing the chance of
unexpected methane emissions or for responding more
quickly and effectively to unknown conditions encoun-
tered during longwall mining.

1.2. Modeling approach for optimizing gob gas vent-
hole performance

A detailed model to realistically represent the multiple
variables associated with underground coal mining
operations and their interaction and influence on the
performance of gob gas ventholes does not currently exist.



Previously, Ren and Edwards (2002) used a computa-
tional fluid dynamics (CFD) modeling approach to
investigate gas capture from surface gob gas ventholes.
That paper introduced how this approach could be used to
improve the design of surface gob wells for methane
recovery while minimizing the leakage of air into the gob.
The results indicated that the position of the wells plays an
important role in determining gas production rate. Wells
drilled into the areas where fractures extend towards the
methane source bed were likely to achieve higher capture
efficiency. Lunarzewski (1998) used boundary element
and sequential bed separation methods for floor and roof
strata relaxation and immediate roof bending separation,
as well as gas emission rate calculations to develop
“Floorgas” and “Roofgas” simulation programs to
characterize the strata relaxation zones, gas emission
boundaries, and parameters for gas emission prediction.
Tomita et al. (2003) developed a three-dimensional (3-D)
finite element model (FEM) to predict the volume of
methane gas emitted from surrounding coal and rock
layers based on stress distribution and permeability
change.

Reservoir modeling methods and simulators have been
developed over the years that can realistically represent the
complex physics of reservoir flow mechanisms in
unconventional reservoirs, such as coalbeds, and gas
production operations with diverse well completions (King
and Ertekin, 1991). These simulators have been success-
fully applied in various coal basins for gas recovery from
coalbeds using both vertical and horizontal boreholes
(Ertekin etal., 1988; Youngetal., 1991; Youngetal., 1993;
Zuber, 1998). However, modeling of the reservoir behavior
and prediction of gob gas venthole performances during
active longwall mining requires that additional variables be
considered that are not encountered in a static reservoir
environment. These considerations are due to the moving
boundary conditions and geomechanical response of rock
units to the stresses and strains imposed by an advancing
longwall face, and by the changing reservoir properties
above a panel as a response to mining.

In one study, Zuber (1997) coupled the moving
boundary condition due to mining and modeled the face
and rib emissions during development mining. However,
this study was mainly conducted on a single grid layer to
analyze the gas emissions from ribs and newly exposed
coal face during development mining, and thus did not
consider the longwall mining environment and methane
control issues associated with gobs. In a more recent
study, Karacan et al. (2005) developed a 3-D model of a
new longwall mining district to simulate the effects
longwall panel width would have on methane emissions
and the performance of gob gas ventholes. The focus of

that effort was the prediction of the incremental amount of
methane emissions to be expected due to increasing panel
widths and optimizing gob gas venthole completion and
placement practices to capture more of this gas to prevent
it from entering the underground workplace.

2. Objective and description of this study

This paper presents the development and results of a
comprehensive, “dynamic,” 3-D reservoir model of a
typical multi-panel Pittsburgh coalbed mine using Com-
puter Modeling Group’s (2003) compositional reservoir
simulator (GEM). The alteration of permeability fields in
and above the panels as a result of the mining-induced
disturbances has been estimated from mechanical modeling
of the overlying rock mass using FLAC-2D (Itasca Con-
sulting Group Inc., 2000), a finite difference model for
simulating the mechanical behavior of rocks in response to
mining-induced stresses, as described in more detail in
Esterhuizen and Karacan (2005). The moving boundary
problem imposed by the advancing longwall face has been
addressed with many “restart” models, where the output of
the previous run is saved in a file to be used by the suc-
ceeding run as the input, within the approach. A pseudo-
ventilation system has been incorporated into the model to
investigate its interactions with the gob gas reservoir.
Model calibration was performed through history matching
of the gas production from the existing ventholes in pre-
viously mined longwall panels at the mine site. Results
presented in this paper include a simulation of possible gas
emission sources, as well as the influence of gob gas vent-
hole completion practices on optimizing gas production.

3. General description of the study area and the
mine

The study mine is located in the Appalachian Basin
in southwestern Pennsylvania, which contains one of the
largest mineable coal deposits in the world and is a
promising region for coalbed methane production by
either conventional coalbed methane (CBM) wells or
from the gob gas ventholes associated with the extensive
coal mining operations in the basin.

The multi-panel mining area covered by panels G
through K (Fig. 3), was selected for this 3-D modeling
study because of data availability and previous NIOSH
tracer gas studies that were conducted to characterize gas
flows in the longwall gob in this area. Overburden depths
ranged between 150 and 270 m (500 and 900 ft). Longwall
panels in the primary study area were initially 253 m
(830 ft) wide and were increased to 305 m (1000 ft) starting
with F Panel (just above G panel in Fig. 3). Thus, the
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Fig. 3. Layout of the longwall mining area selected for modeling.

panels are super-critical, i.e., the panel width is greater than Between these two major coalbeds, there are comparably
the height of the overburden, which results in a more thin Pittsburgh rider coals and the sometimes-present Red-
complete caving of the overburden strata into the mine stone coalbed. The Upper and Lower Waynesburg coal-
void. A generalized stratigraphic section of the strata above beds with a total thickness of about 2 m (7 ft) are located

the Pittsburgh coalbed in the study area is shown in Fig. 4. about 95 m (310 ft) above the Pittsburgh coalbed.
Several coalbeds with a combined thickness of almost 3 m Although the Pittsburgh coalbed is the primary coalbed

(10 ft) are present in the 26 m (85 ft) of strata immediately gas reservoir in this section, the Sewickley and Waynes-
above the Pittsburgh coalbed, and they are believed to be burg coalbeds have also been reported to be CBM pro-
the primary source of strata gas in the area. Within this ducers in this area (Bruner et al., 1995).
interval, the thickest coalbed is the Sewickley coalbed, Methane control in the study mine longwall district
which is about 25 m (75 ft) above the Pittsburgh coalbed. includes the bleeder ventilation system, gob gas
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Fig. 4. A generalized stratigraphic section of the strata above the Pittsburgh coalbed in the study area.



ventholes, and underground horizontal methane drain-
age boreholes. The bleeder ventilation system includes
the peripheral bleeder entries surrounding the panels, the
former gateroads between the mined-out panels, and
the associated bleeder fan shaft(s). The bleeder fans in
the primary study area are at the top of 1.8 m (6 ft)
diameter air shafts. Gob gas ventholes at this mine site
are generally drilled to within 12 m (40 ft) of the top of
the Pittsburgh coalbed, and 17.8 cm (7 in.) casing with
61 m (200 ft) of slotted pipe on the bottom is installed,
as shown in Fig. 5 (Mucho et al., 2000).

4. Reservoir model development for longwall mining

The reservoir model was constructed using the GEM
software, which is an efficient, multidimensional, equa-
tion-of-state (EOS) compositional simulator that can
simulate the dual-porosity behavior of coal seams for
coalbed/enhanced coalbed methane recovery. This section
describes the approach followed to build a reservoir model
to simulate the dynamic process of longwall mining.

4.1. Grid model of the study area

For the current study, a three-dimensional grid model
of the mine area shown in Fig. 3 was created using
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Fig. 5. Typical gob gas venthole completion scheme used in the study
mine area.

Cartesian grids. The dimensions of the grid model were
based on the area covered by the five longwall panels
(G, H, I, J, K) in the selected study area, and the
development and bleeder entries between them. At this
mine site, each panel was 305 m (1000 ft) in width and
3500—4000 m (12,000—13,000 ft) in length, except the
K panel which was 2130 m (7000 ft), and the total width
of each set of three entries on either side of the panels,
including the gate roads and the pillars, was determined
from the mine maps to be about 61 m (200 ft).

The number of vertical layers and their thicknesses were
based on the generalized stratigraphic log of the area shown
in Fig. 4. In the grid model, the top-most layer of the model
was assigned to the Waynesburg coalbed, and the bottom-
most layer was the Pittsburgh coalbed, or mining layer.
Floor strata have not been included into the model in this
study. The other lithologies shown in the log were
represented in the grid model based on their thicknesses
and their sequence as a function of depth. Although this log
presents only major generalized stratigraphic layers in the
study area, it was sufficient to determine the number of
vertical layers and their thicknesses for generating the grids
in the vertical direction. Also, the layers shown in Fig. 4
were assumed to be uniformed in thickness and continuous
throughout the field. Thus, the structure map for the top of
the Pittsburgh coalbed (mining layer) was digitized as the
reference elevation, and the depths of other layers were
determined based on their thicknesses.

In the grid model, the Pittsburgh coalbed layer was
constructed differently from the other layers to include the
details of the longwall mining operation, the related
mining environment, and the lower part of the caved zone.
This layer was constructed in such a way that it would host
both the mined and unmined Pittsburgh coalbed, and the
entries that surrounded the panels. The entries were
represented by a single grid rather than a detailed gridding
for each gate road at the tailgate and headgate sides to
simplify these underground transport and ventilation
airflow pathways. Thus, single grid entries represent the
combined effects of the three-entry system.

Fig. 6 shows the 3-D grid model that was constructed for
this study. The figure shows only the Waynesburg coalbed
(top layer) and Pittsburgh coalbed (bottom layer) layers.
The other layers between the Waynesburg and Pittsburgh
coalbeds have been removed for a better visualization of the
wellbores used in the model. The stratigraphic log was
inserted to the right of Fig. 6 for reference purposes. The
bottom figure shows the grid construction for the mining
layer, including the specific features discussed in the pre-
vious paragraphs. Fig. 6 also shows the gob gas ventholes
and the elements of the pseudo-ventilation system
described in the following section.
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4.2. Gob gas ventholes and the pseudo-ventilation
system

To include a simplified version of the ventilation
system (called pseudo-ventilation system in this paper)
in a longwall mining area, a set of horizontal wells
representing the ventilation air input and a vertical well
representing the bleeder fan were built into the grid
model to represent the ventilation airflows to dilute
methane in the entries and in the gob (caved zone). The
horizontal wells were designed to inject nitrogen into the

entries with a rate constraint to simulate the typical
airflow rate at the mine site. One horizontal well was
dedicated to each panel for ventilation purposes (Fig. 6).
Each of the horizontal wells were operated sequentially
for the time period required for mining of the associated
panel as the changing longwall face location was
simulated during model runs, as will be described in
the following sections.

The bleeder fan was modeled with a vertical well in the
grid model at the tailgate side of the G panel, with the
completion interval being equal to the height of the entries



(thickness of the Pittsburgh coalbed). To model the large
diameter air shaft, the diameter of the well was assigned to
the maximum wellbore diameter allowed in the model of
0.74 m (2.5 ft). During simulations, the bleeder fan was
operated with bottom-hole pressure constraints to control
the mine ventilation pressures. The bleeder fan and the
elements of the pseudo-ventilation system are shown in
Fig. 6. The locations and completions for the gob gas
ventholes (Fig. 6) were determined based on their actual
locations and their individual completion records.

4.3. Reservoir characterization and data sources

The construction of dual-porosity reservoir models in
general requires detailed consideration of the geology
and related reservoir-rock properties. The key concept in
this study was the incorporation of parameters that
realistically represent reservoir properties and their
changes in response to longwall mining within the
model. Most of the data required by the simulator for
this study was gathered from previous NIOSH publica-
tions documenting research activities in the surrounding
area, as well as external reports and personal commu-
nications with the operating mining company for setting
the initial, pre-mining reservoir properties to the coal
and non-coal units. However, since reservoir properties
were not available for each individual layer in the model
grid, particularly for non-coal layers, the same proper-
ties were assigned for all similar lithologies.

In the central and northern Appalachian Basin coalbeds,
face and butt cleats are perpendicular and parallel,
respectively, to the fold axis. In the northern Appalachian
Basin, the face cleat of the Pittsburgh coalbed rotates from
N 80° W in northwestern West Virginia to N 57° W in
southwestern Pennsylvania (McCulloch et al., 1974),
where the study mine was located. This rotation of the
cleat direction in the field enabled close orientation of the
cleats in the direction of grids.

Cleat spacing is an important reservoir property for
modeling gas flows in coalbeds. Law (1993) reported
cleat spacings of 0.5-9.7 cm in the northern Appalachian
Basin. In this study, cleat spacings were taken as 3 cm
(1.2 in.), which was a value based on the reported mean
cleat spacing values of 2.4 cm (0.94 in.) and 3.20 cm
(1.26 in.) from outcrops of the Pittsburgh and Sewickley
coalbeds, respectively (Law, 1993). The gas content and
adsorption-related data for the Pittsburgh coalbed and
other major coalbeds in the area were obtained from direct
method gas content determination tests (Diamond et al.,
1986), and the adsorption data were obtained from
available adsorption isotherms. For the coal layers for
which no adsorption isotherms data were found (i.e.,

Pittsburgh riders and Redstone coalbed), their properties
were assumed to be the same as for the Pittsburgh coalbed.

In this study, history matching techniques were used
to estimate the undisturbed or initial permeabilities for
major coalbeds and the permeability of the caved zone
in the longwall gob. The fracture permeabilities for the
Pittsburgh, Sewickley, and Waynesburg coalbeds were
estimated to be 4 md in the face-cleat direction and 1 md
in the butt-cleat direction. In the simulations, these
initial values, like others, were assumed to be uniformed
throughout the individual layers.

The permeability of the caved zone in the longwall gob
is not easily predictable and little data are available in the
literature. For this study, the permeability value was
determined as a result of the overall model calibration
procedure, using geomechanical calculations generated
by the FLAC (Fast Lagrangian Analysis of Continua,
Itasca, 2000) program (to be discussed in greater detail in
the following sections), and by verifying the estimated
values for methane concentrations (<1%) in the caved
zone grids near the face location as calculated by the
simulator. This approach resulted in an estimated
permeability of about 10 m? (10° md) in the horizontal
direction and 10~ "' m? (10* md) in the vertical direction
for the caved zone. These permeability values fall into the
range of open-jointed to heavily fractured rock in the
horizontal direction and into jointed rock classification in
the vertical direction (Hoek and Bray, 1981).

Brunner (1985) investigated the migration of air
through longwall gobs using a ventilation model, and
constructed a laminar resistance grid over the caved zone.
He assigned a resistance value to each resistance element
in the grid. The permeability values he used and tested in
his resistance model for the gob ranged between 10> and
10" m? (10'° and 10® md). However, he did not consider
any distinction between vertical and horizontal perme-
ability. Based on fractured porous medium vs. perme-
ability classification, these values fall into the range of
heavily fractured rock (Hoek and Bray, 1981).

In the model, the entries surrounding the longwall
panels serve as main pathways for ventilation airflow.
Thus, the permeabilities for this portion of the Pittsburgh
coalbed grid layer (three entries plus the associated coal
pillars combined) were assigned an average high value
[10°7 m? (10® md)] within the allowed limits of the
simulator for minimum resistance. The fracture porosity
and fracture spacing required for the entry area were
calculated from the mine maps. For these calculations, the
pillars were conceptualized as solid structures and the
roadways were conceptualized as fracture openings.
Thus, from the area ratios of entries to the total area
(pillars and entries) in a unit length of the section, an



Table 1
Representative prior to mining reservoir-rock properties used in the
study

Parameter Pitt. Sandstone Limestone Shale Entries
coal

Permeability-x (md) 4 20 2 02 9x10’

Permeability-z (md) 0.25 20 2 0.1 9% 107

Effective porosity 0.04 0.1 0.02 0.01 04
(fraction)

Eff. fracture spacing 0.03/  15/50 60/200 60/ 30/100
(m)/(ft) 0.01 200

Langmuir P. 225/ - - - -
(MPa)/(psi) 326

Langmuir vol. 15.5/ - - - -

(cc/g)/(scf/ton) 490

Desorption time 20 - — — _
(days)

Coal density (g/cc) 135 - - - -

approximate area of 40% (or volume) occupied by
fractures was calculated. The length of one side of a
pillar, which was about 30 m (100 ft), was taken as the
fracture spacing for the entries. Table 1 gives a few of the
representative reservoir parameters that were calculated,
obtained from the literature, or estimated from calibration
runs and used in the model. These values, particularly
permeabilities, represent the values prior to mining.

One of the important considerations in reservoir
modeling of longwall mining process is the estimation
of permeabilities or change of competent rock properties
in the overlying strata of the panel during and after mining
disturbance has occurred, and including these changes to
the reservoir model at different face positions. These
changes were predicted by geomechanical techniques and
their effects on reservoir permeabilities were estimated as
discussed in the following section.

4.4. Geomechanical modeling of permeability changes

The effect of longwall mining on the permeability ofthe
surrounding rock was evaluated using the FLAC finite
difference program. The program has the capability to
model the mechanical behavior of rocks in both the pre-
and post-failure modes, can model the caved rock as a
strain hardening material, and simulates the mining process
as a sequence of interrelated modeling steps. Rock failure
is allowed to take place in response to the stress re-
distribution around the longwall panel. Failure may occur
in the overburden strata either by shearing along bedding
planes or by fracturing through intact rock material.

Rock strength values used in the FLAC model were
selected from the results of extensive mechanical
property testing of coal measure strata, as reported by

/—| Ground surface |

Surface soil

Interbedded shale
and sandstone

Sandstone

Limestone

250 m (820 ft)

Shale

Caved rock

11] QiR

Coal seam

555505 50555555 05504

5555554

Advancing face

55555 555555555h 5554
5555555555555 0h555Y

5555
55550
5555
5555
5555
5555
55555
5555

Plane of symmetry

400 m (1310 ft)

Fig. 7. Vertical section of the stratigraphy at the mine site, the caved rock, and the direction of mining as modeled using FLAC.



Rusnak and Mark (1999) and Molinda and Mark (1996).
The model calculated the strength of the intact material
as well as the strength of the bedding planes by using a
ubiquitous joint approach in which bedding planes are
assumed to be uniformly distributed throughout the rock
mass. Rock failure was based on the Coulomb failure
criterion, with strain softening and dilation occurring
once the rock has failed. The model runs were taken to
equilibrium at each step of the simulated mining
process, so that rock failure and stress re-distribution
would occur. The modeling steps included a sufficient
lateral extent of mining, so that full subsidence of the
overburden strata would occur over the mined area.
Two-dimensional FLAC models were created to
simulate both longitudinal and cross-sectional profiles
through an active longwall panel. The models included
the rock mass from 100 m (328 ft) below the Pittsburgh
coalbed up to the ground surface. The initial vertical
stress in the model increased with depth according to the
overburden load, while relatively high horizontal
stresses were imposed as described by Dolinar (2003).
Rock mass parameters were included in the model, with
each layer having a specific strength, stiffness, and initial
stress state. The caved rock was simulated to a height of
four times the longwall extraction height, 7.3 m (24 ft) in

250 m (820 ft)

<

this case. Rock failure was permitted to take place in the
model in response to longwall mining using failure
criteria and strength properties appropriate for the
individual strata layers. Fig. 7 shows an example of a
longitudinal model.

The fracture permeability of rock strata is highly
dependent on the in situ stress, and most importantly in a
mining environment, mining-induced changes in stress
with time (Hoek and Bray, 1981; Lowndes et al., 2002).
An exponential relationship was used to compute the
effect of stress changes on the rock mass permeability
after the work of Ren and Edwards (2002) and Lowndes
et al. (2002). Permeabilities were calculated indepen-
dently for the horizontal and vertical directions:

kh _ kh0670.25(oyyfayyo) (1)
and
kv _ kvoe—O.ZS(axx—o'xxo) (2)

where ky,, and ky, are initial permeabilities, o, and
oyy are the prevailing stresses and oy, and oy, are the
initial stresses in horizontal and vertical directions,
respectively. Figs. 8 and 9 show the results of a FLAC
model for the horizontal and the vertical permeabilities,

Ground surface

Permeability (md)
108
102
107

400 m (1310 ft) N

Fig. 8. Vertical section showing vertical stress contours (in MPa) and the horizontal permeability distribution as a result of longwall mining

determined by FLAC modeling.
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Fig. 9. Vertical section showing vertical stress contours (in MPa) and the vertical permeability distribution as a result of longwall mining determined

by FLAC modeling.

respectively. In these figures, the vertical stress contours
are also shown. A low permeability zone is indicated
ahead of the advancing longwall face in the unmined
coalbed, and higher permeability is present in the caved
zone behind the face in the gob, and decreasing further
away from the face as the subsided strata is re-
compacted over time. Further details of FLAC model
development for permeability calculations are given in
Esterhuizen and Karacan (2005).

4.5. Scheduling of runs for “dynamic” reservoir
modeling for longwall mining

Longwall mining and the response of overlying strata
to mining disturbances are dynamic processes. As the
mining face advances, the reservoir properties, espe-
cially the fracture permeabilities of individual layers,
change based on their strength and based on how much
stress they are exposed to. Production from each gob gas
venthole usually starts soon after the location is
undermined by the longwall and can continue for a
significant length of time, even after the panel is
completed (Diamond, 1994) because of the protracted
influence of the mining-induced strata disturbances.

This situation leads to a moving-boundary-value
problem. Two methods can be used to handle this
problem: one is at the differential equation level, and the
other is at the coefficient matrix level in which
transmissibilities are treated in such a way that fully
mined cells are assigned the mine pressure and partially
mined cells are treated as constant-pressure boundaries
(King and Ertekin, 1991). However, this situation seems
more applicable to simulation of single layers, where
only the production from completions in unmined
coalbeds is considered.

In this study, the moving boundary problem in 3-D
was handled with 15 different “restart” model runs in the
simulation. These restarts were run sequentially, each
characterizing a stage in the mining/face advance and
associated strata disturbances. Each restart run (mining
step) was performed in such a way that mining would
progress up to the next venthole location for the distance
and time characterizing the face movement between
successive ventholes. In this process, the simulation
outputs from the previous model run are written to a
“restart” file, then used by the next model run as updated
longwall face and reservoir parameters for the next face
position. Fig. 10 schematically presents the scheduling
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from each gob gas venthole.

of face positions and the actual time (in days) when each
gob gas venthole started production.

5. Model calibration through history matching

Model calibration through history matching can be
used with accurate field and laboratory data for
determining the remaining unknown reservoir proper-
ties and for predicting future well performance (Zuber
et al., 1987). In this study, the known gas flow rates and
gas composition from existing gob gas ventholes were
history matched, while constricting the predicted
bottom-hole pressures of gob gas ventholes around or
below atmospheric pressures, as observed in the field, to
estimate the disturbed and undisturbed permeabilities of
fractured strata as a result of mining, a coal desorption
time constant, and the permeability of the caved zone.

The fractured rock permeabilities, or permeability
changes, calculated by FLAC computations, were
incorporated into the model to update the properties of
the regions affected by mining as the longwall face was
advancing. Advancement of the longwall face was
simulated during history match runs and became an
integral part of the matching procedure. This was
basically a trial-and-error approach, where a “dynamic”
longwall mining simulation run was made using all
known and fixed values and the “initial estimates” for the

unknown values. Then, the simulated gas production rate
and concentrations from each gob gas venthole were
compared with the actual data.

Based on the comparison between simulated and
actual productions for the entire period of simulation,
adjustments were made to the unknown parameters, and
additional runs were completed until an acceptable
agreement was achieved. While adjustments were being
made to the unknown parameters during the history match
runs, the gob gas ventholes were operated with the
targeted gas rates (the observed daily rates given on a
weekly basis) as the well control constraint, and wellbore
bottom-hole pressures and produced gas compositions
were computed by the simulator. The acceptance criteria
for the calculated pressures were that they should be lower
than, but close to atmospheric pressures, as they normally
should be in the longwall gob producing reservoir. This
alternative approach was taken due to the lack of reported
well bottom-hole pressure data for the gob gas ventholes,
since these parameters are not commonly measured as
part of the collected production data at most mine sites.

Although the model had been set up for two-phase
flow, the water phase was mostly treated as immobile,
except in the caved section, where the available water in
the fractured strata was allowed to drain into gob during
caving, increasing the water saturation in the caved zone
by 5%. This was an estimated value, but the cooperating



mining company verified that there was not any water
production from any of the ventholes, and confirmed a
general lack of water influx into the entries from the roof
and the gob. Although there might be regional varia-
tions, these observations in the underground mining
environment suggest that this region has been desatu-
rated and depressurized during its geological past, as
well as from the extensive coal mining and oil and gas
production activities, as further inferred by Hunt and
Steele (1991).

Figs. 11 and 12 show the actual and simulated gas
production rates and methane concentrations for one
venthole on each longwall panel in the study area. As can
be seen from these figures, the gas production rate data
match well for most of the data points, and the methane
concentrations can be matched for average values and
general trends. The shifts in time scale for each venthole to
become productive are caused by, and depend on, when the
venthole location was intercepted by the longwall face.
The calculated bottom-hole pressures for the same vent-
holes are given in Fig. 13. This figure shows that before the
ventholes are intercepted by the mining disturbances, the
bottom-hole pressures (equal to the reservoir pressure
when the well is shut-in) are slowly declining, basically
because of the effect of the approaching longwall face and
the gobs of nearby longwall panels. However, when the
venthole location is intercepted by the longwall face, the
bottom-hole pressure sharply drops to below-atmospheric
pressures because of the venthole connection with mine
pressures through the mining-induced fractures. Thus,
depending on the completion depth and amount of applied
vacuum, the venthole competes to varying degrees with the

ventilation pressures to produce gas from the subsided
strata. Even during the periods when the ventholes are not
actively being produced (i.e., no vacuum pressure is being
applied), they stay close to or under atmospheric pressure
conditions. The bottom-hole pressures calculated in this
step were used as the operating constraint for gob gas
venthole completion scenarios that are presented in the
following sections.

6. Results and discussion

6.1. Characterization of methane emission sources in
relation to longwall mining

A better understanding of how the reservoir character-
istics and subsided strata mechanics associated with long-
wall mining influence the release and migration of
methane in the underground environment will help
operators increase the efficiency of their methane control
systems. Investigations of the source of longwall gob gas
by Diamond et al. (1992) showed that overlying coalbeds
were the primary contributors of gas to the gob. Previous
studies by NIOSH at this current site suggested that the
overlying Pittsburgh Rider coals, the Redstone coalbed
(when present), and the Sewickley coalbed were most
likely the primary sources of gob gas associated with the
Pittsburgh coalbed (Mucho et al., 2000).

The longwall subsided strata reservoir model described
previously was used to further characterize the methane
sources that contribute to the gob gas at the study mine site.
Fig. 14 shows a vertical cross section of the subsided strata
reservoir over the headgate side of H panel and the
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Fig. 11. Comparison of observed and simulated gas productions from one gob gas venthole at each panel mined.

Values were obtained using the

“dynamic” modeling approach described in this study (arrow showing the axis for H-3 data points).
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Pittsburgh coalbed layer 630 days after the start of mining
on the adjacent G panel. The methane mole percent data
show that the methane concentration is high in gas emis-
sions from Sewickley coalbed, and this coalbed seems the
primary source of longwall gob gas in this region.
Modeling results show that there is some methane emission
from Waynesburg coalbed also due to a general pressure
decline in the rock layers because of mining. These two
coalbeds have been reported as producing horizons in
coalbed gas wells in the Northern Appalachian Basin
(Bruner et al., 1995). However, the Waynesburg coalbed is
not thought to be a major contributor to the Pittsburgh gob
gas, since its gas storage capacity is low (0.1-0.3 cm®/g)
according to Diamond et al. (1992), geomechanical mo-
deling of the area showed that vertical fracturing does not
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normally extend up to the Waynesburg coalbed’s elevation,
and the slotted casings of the gob gas ventholes are set
about 100 ft below the Waynesburg coalbed elevation). The
Redstone coalbed (if present) and the Pittsburgh Rider coals
are within the caved zone, and thus, gas from these
coalbeds may report to the ventilation system because it is
the closest pressure sink to this gas source.

Fig. 15 illustrates the model predictions across another
vertical section of the subsided strata reservoir over the I
panel tailgate. This figure shows two I panel gob gas
ventholes and their effect in reducing methane concentra-
tions within their effective radius and in the sheared zone
below the Sewickley coalbed at the 630th day of mining
of these panel series. From the modeling results shown in
this figure, gas released from the Sewickley coalbed is
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Fig. 13. Bottom-hole pressures calculated by the model for the shown gob gas ventholes of each panel (the opposing arrows show the times before and

after the interception of each of the gob gas ventholes).
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Fig. 14. A vertical cross section of the subsided strata reservoir over the headgate side of H panel and the Pittsburgh coalbed layer 630 days after the
start of mining on the adjacent G panel. The methane mole percent data show that the methane concentration is high in gas emission from Sewickley
coalbed and this coalbed seems the primary source of longwall gob gas in this region.

expected to be the primary source of gas captured by the
gob gas ventholes, since they are the closest pressure sink
acting upon this gas source. This also suggests that the
methane emissions from Sewickley coalbed may enter the
ventilation system if these wells do not operate contin-
uously and effectively.

Methane Mole
Fraction

1.00
0.a0
0.20

6.2. Effects of gob gas venthole completion practices on
production

At the study mine site, the general completion practice
for the gob gas ventholes was to drill to within 12 m (40 ft)
of the top of the Pittsburgh coalbed, then install 17.8 cm

Waynesburg coalbed

Sewickley coalbed

Pittsburgh coalbed

Effect of gob gas venthole
at specific time during its
operation

Fig. 15. A vertical section of the subsided strata reservoir over the I panel tailgate after 630th day since the start of mining. This figure shows two I
panel gob gas ventholes and their effect in reducing methane concentrations within their effective radius and the sheared zone below the Sewickley
coalbed at that specific time. It is also shown that gas released from the Sewickley coalbed is the primary source of gas captured by the gob gas
ventholes, since they are the closest pressure sink acting upon this gas source. This observation also suggests that the methane emissions from
Sewickley coalbed may enter directly to the ventilation system if these wells do not operate continuously, and effectively.
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Fig. 16. Simulated cumulative methane production from all ventholes
in four panels for different casing diameters.

(7 in.) casing with a 61 m (200 ft) slotted section at the
bottom, as shown in Figs. 5 and 6. This completion
strategy places the slotted casing adjacent to the gas-
bearing strata in the fractured zone, and high enough
above the caved zone so that the venthole does not extract
excessive amounts of mine air. Thus, this completion
strategy maximizes the capture of methane originating in
the fractured zone, in particular gas from the Sewickley
coalbed at the study mine site, before it can migrate to the
caved zone and into the mine environment.

In this modeling study, a series of gob gas venthole
completion scenarios were run using well pressures
calculated in previous steps as the operating constraints
to investigate how methane capture characteristics would
be affected if the venthole diameter, slotted casing length,
and slotted casing setting depth were changed. However,
it should be kept in mind that, in such a complex
environment, the permeability changes in the subsided
strata are directly related to the strength of the associated
rock units and to their response to a given stress level.
Thus, the lengths of slotted casing located in different rock
layers may make a difference in methane capture
efficiency. Therefore, some of the results from this
study may be specific only to the study mine site, other
mines operating in Pittsburgh coalbed, and perhaps to
other mining areas with similar mining and geologic
conditions. However, it is reasonable to assume that the
results may offer some degree of generalization in
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Fig. 17. Average methane concentration based on cumulative
productions from all ventholes in four panels for different casing
diameters.

understanding and predicting the influence of various
changes in completion design on gas production.

6.2.1. Effect of slotted casing diameter

The casing diameter of the gob gas ventholes at the
study mine site was 17.8 cm (7 in.). To investigate the
possible effects of different slotted casing diameters on
methane production and concentration in the produced
gas, alternative diameters were tested with the model.
For this study, the casing diameter was increased to
25.4 cm (10 in.) and decreased to 10.2 cm (4 in.). The
other completion parameters, such as length of slotted
casing and setting depth, were held constant at their
original design values, 61 m (200 ft) and 12 m (40 ft),
respectively.

Fig. 16 shows cumulative methane production from all
gob gas ventholes on the four mined panels in the study
area as a function of mining time. The modeling results
predict that methane production will increase with the use
of the larger diameter casing. The cumulative methane
production was 4.9% more with the 25.4 cm (10 in.)
casing, as compared to the 17.8 cm (7 in.) diameter casing.
Conversely, the amount of methane produced with the
smaller, 10.2 cm (4 in.) diameter casing was about 7% less
than that produced from the 17.8 c¢cm (7 in.) diameter
casing in the base case.

However, compared to the 17.8 cm (7 in.) casing base
case, the amount of air produced from the 25.4 cm (10 in.)

Table 2

Effect of casing diameter on cumulative methane and total gas production and average methane composition of the produced gas

Casing diameter Cum. CH; (MMscf) CH, diff. rel. to Cum. gas Diff. (CHy+Air) rel. to  Cum. air  Air diff. rel. to Ave. CHy

(inch) 7 in. casing (%) (CH4+Air) 7 in. casing (%) (MMscf) 7 in. casing (%)  conc. (%)

(MMscf)

4 391.8 —6.7 609.4 -9.9 217.6 —15.2 64.3
419.8 - 676.5 - 256.7 - 62.1

10 440.1 +4.9 728.4 +7.6 288.3 +12.3 60.4
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Fig. 18. Simulated cumulative methane production from all ventholes
in four panels for different casing lengths.

diameter casing was 12.3% higher, and it was 15.2%
lower with the 10.2 cm (4 in.) diameter casing. Thus, the
methane concentrations were higher in the produced gas
from the 10.2 cm (4 in.) diameter casing, and lower from
the 25.4 cm (10 in.) diameter casing. In the case of the
25.4 cm (10 in.) diameter casing, the reduced methane
concentration was most likely caused by more mine air
being captured because of an increased depletion radius
created by the larger diameter pressure sink. Since the
total (CH,4+air) gas production (Table 2) increased with
an increase in casing diameter, the marginal decrease in
methane concentration still resulted in a higher cumula-
tive methane production volume with a larger diameter
venthole. The change of methane concentration in the
cumulative gas production is shown in Fig. 17. The
average predicted methane concentrations in the produced
gas stream from the simulated gob gas ventholes with
25.4cm (10 in.) and 10.2 cm (4 in.) casing was 60.4% and
64.3%, respectively, as compared to 62.1% for the
17.8 cm (7 in.) casing base case.

6.2.2. Effect of slotted casing length

Another gob gas venthole completion parameter
investigated was the influence of the length of the slotted
casing on gas production. For this set of simulations, the
length of the slotted casing section was changed to 30.5 m
(100 ft) and 76.2 m (250 ft), and the results compared to

Table 3

the original 61 m (200 ft) slotted casing base case. The
casing diameter and setting depth were kept the same,
17.8 cm (7 in.) and 12 m (40 ft), respectively, for these
simulations. Fig. 18 shows the cumulative methane
production from the simulated gob gas ventholes as a
function of mining time. The modeling results predict that
the cumulative methane production will increase with an
increase in casing length. The methane production from
the simulated gob gas ventholes with 76.2 m (250 ft) of
slotted casing was 459.4 MMscf (13.0x10° m®), as
compared to the 391.8 MMscf (11.1x10° m?) in the
original 61 m (200 ft) slotted casing base case (Table 3).
This represents a 9.5% increase in methane capture from
the ventholes in the four-panel study area. However, when
the slotted casing length was shortened to 30.5 m (100 ft),
the methane production decreased to 314.7 MMscf
(8.9x10° m?), an approximate 25% reduction from the
61 m (200 ft) slotted casing base case.

When the length of the slotted casing completion
interval was increased to 76.2 m (250 ft) for the simulated
gob gas ventholes, the cumulative volume of produced air
was 302.8 MMscf (8.6 x 10° m?), or 17.9% more than that
for the 61 m (200 ft) slotted casing base case. This results
in a lower average methane concentration in the produced
gas stream from the ventholes with an increased
completion interval. The cumulative volume of air
produced by the gob gas ventholes simulated with
30.5 m (100 ft) of slotted casing was about 154 MMscf
(4.4x10° m?), or 43.5% less than that from the base case
ventholes, resulting in a higher methane concentration in
the produced gas stream from these holes.

The decrease in simulated methane concentrations
resulting from the increase in slotted casing length for
gob gas ventholes at the study site may be due to setting
the extra slotted casing length adjacent to less fractured
(lower permeability) strata, the increased flow resistance
in that zone, which likely to increase the production and
gas flow from the lower section of the hole closer to the
caved zone. Although the flow rate is lower in the less
fractured strata, compared to the deeper, more perme-
able sections of the strata, extending the slotted casing
length to 76.2 m (250 ft) still resulted in the production
of 12.7% more gas, as compared to the 61 m (200 ft)

Effect of casing length on cumulative methane and total gas production and average methane concentration of the produced gas

Casing length Cum. CHy CH, diff. rel. to Cum. gas

Diff. (CH4+Air) rel. Cum. air Air diff. rel. to Ave. CHy

(ft) (MMscf) 200 ft casing (%) (CHy+Air) (MMscf) to 200 ft casing (%) (MMscf) 200 ft casing (%) conc. (%)
100 314.7 =251 468.7 -30.7 154.0 —43.5 67.1
200 419.8 - 676.5 - 256.7 - 62.1
250 459.4 +9.5 762.2 +12.7 302.8 +17.9 60.3
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Fig. 19. Simulated cumulative methane production from all ventholes
in four panels for different casing setting depths.

base case. This eventually resulted in the production of
9.5% more methane that otherwise might have migrated
into the mining environment.

Decreasing the casing length to 30.5 m (100 ft)
resulted in the production of gas with a higher average
methane concentration, mostly from the Sewickley
coalbed, where the strata disturbance was more severe
because of its proximity to the mining. However, the
modeling results indicate that the shorter casing length
was not efficient in capturing and producing methane
from the upper strata. Although the average methane
concentration in the produced gas stream at the end of
the simulated mining period was 5—7% higher with the
shorter simulated slotted casing interval, as compared to
that from the ventholes with longer casing intervals, the
total gas and methane production for the venthole with
30.5 m (100 ft) of slotted casing was 30.7% and 25%
less, respectively, as compared to the 61 m (200 ft) base
case length. Table 3 summarizes the production data to
show the effect of casing length on methane capture.

For design purposes, it should be emphasized that site-
specific distribution of gas-bearing strata associated with
the various lengths of slotted casing will have a profound
effect on the methane production, e.g., coalbeds and gas-
bearing sandstones and shales in the upper strata being in
or out of the slotted casing completion zone. Therefore, it
is important to make an assessment of the geological
layers in the overlying strata and their gas emission

potentials. For this purpose, gas content testing is critical
(Diamond and Schatzel, 1998), along with the simula-
tions, in determining the optimum length of slotted casing.

6.2.3. Effect of slotted casing setting depth

This scenario was simulated to investigate the effect
of casing setting depth (distance above the top of the
mining layer) on gas production. In the original venthole
completion design, the casing setting depth was 12 m
(40 ft) based on the caving height value estimated by
Mucho et al. (2000) as 10.7 m (35 ft) above the
Pittsburgh Coalbed. As alternative approaches, 19.8 m
(65 ft), 7.6 m (25 ft) and 4.6 m (15 ft) setting depths
were simulated. In these alternative cases, the 7.6 m
(25 ft) depth corresponded to the upper section of the
caved zone, which was simulated in this study as 7.3 m
(24 ft) above the Pittsburgh Coalbed, and the 4.6 m
(15 ft) depth corresponded to circumstances where the
venthole was drilled well into the caved zone. For these
scenarios, the casing diameter and slotted casing lengths
were kept at their original design values, 17.8 cm (7 in)
and 61 m (200 ft), respectively.

Fig. 19 shows the cumulative methane production for
the simulated alternative casing setting depths. Raising
the casing setting depth to 19.8 m (65 ft) above the
Pittsburgh coalbed as compared to 12 m (40 ft) resulted
in 4% more cumulative methane production. The
predicted cumulative methane production declined by
about 5% and 29% when the casing was set to within
7.3 m (25 ft) and 4.6 m (15 ft) of the top of the mining
layer, respectively. The total gas production increased
by 4.9% with the 19.8 m (65 ft) slotted casing setting
depth scenario (mostly due to the increase in methane
production), and decreased by 5% for the 7.3 m (25 ft)
setting depth (mostly because of the decrease in methane
production). The total gas production increased by about
10.3% with the 4.6 m (15 ft) slotted casing setting depth.
In the 4.6 m (15 ft) setting depth scenario, the lower slots
of the casing were in the caved zone influenced by the
mine ventilation system where flow resistance was
small. Therefore, the ventholes pulled 74% more mine
air, as compared to the operator’s standard 12 m (40 ft)
setting depth (Table 4). Since most of the produced gas

Table 4

Effect of slotted casing setting depth on cumulative methane capture, total gas production, and average methane composition at the end of mining
Setting depth Cum. CHy CH, diff. rel. to Cum. gas Diff. (CH4+ Air) rel. Cum. air Air diff. rel. to Ave. CHy
(ft) (MMscf) 40 ft depth (%) (CH4+Air) (MMscf)  to 40 ft depth (%) (MMscf) 40 ft depth (%)  conc. (%)
65 436.1 +3.9 709.3 +4.9 273.2 +6.4 61.5

40 419.8 - 676.5 - 256.7 - 62.1

25 399.8 -4.8 642.9 -5.0 243.1 =53 62.2

15 298.7 —28.8 746.1 +10.3 447.3 +74.0 40.3
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Fig. 20. Simulated methane concentration in the instantaneous
productions evaluated based on production from all ventholes in
four panels for different casing setting depths.

was mine air at the 4.6 m (15 ft) setting depth (Figs. 20
and 21), the average methane concentration in the
cumulative produced gas at the end of mining on the
panel was only 40%, as opposed to the 60—70% average
methane concentration calculated for other slotted
casing setting depths.

A real-world example of the gas quality consequences
of completing gob gas ventholes into the caved zone is
illustrated with measured gas concentration data from two
ventholes continuously monitored at another site, very
close to the study area simulated in this paper. For this new
site, the height of the caved zone was estimated to be
~12 m (~40 ft), higher than at the primary site
investigated for this study, because of the presence of the
sandstone paleochannel with varying thickness above the
Pittsburgh coalbed layer. The first gob gas venthole on one
of the new monitored panels was completed to a depth of
14.3 m (47 ft) above the top of the Pittsburgh coalbed,
generally within the standard depth range for the mine site.
However, the second venthole on the same panel was
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Fig. 21. Average methane concentration based on cumulative
productions from all ventholes in four panels for different casing
setting depths.

inadvertently drilled deeper to a depth of 10.6 m (35 ft)
above the top of the Pittsburgh Coalbed, which is in the
caved zone. As shown in Fig. 22, the methane con-
centration in the produced gas from the venthole completed
into the caved zone averaged about 30% less than that of
the standard completion depth above the caved zone
because of the increased production of mine ventilation air.
It should be noted that, even though the estimated caved
zone height for which the predictions for the study site
described in this paper is slightly different than the new site
where the data shown in Fig. 22 was measured, a similar
methane concentration decrease (25—30%) was predicted
for the ventholes penetrating into caved zone.

The increased production of mine ventilation air from
the gob gas ventholes is a problem for several reasons.
The first concern is that if the venthole is producing at its
maximum capacity, then all of the available methane in
the subsided strata may not be captured, and thus can
migrate to the underground workplace where it is a
potential explosion hazard. In addition, when coalbeds
and associated caved zone strata are prone to spontaneous
combustion, the flow of additional mine air into this zone
may pose an increased risk of a mine fire of spontaneous
combustion origin. There are also economic issues
associated with producing higher levels of mine ventila-
tion air from the gob gas ventholes. Obviously, there are
costs associated with providing ventilation air to the
underground workings, as there are with the drilling and
operation of the ventholes. Economically, it is counter-
productive to incur cost to first introduce the ventilation
air to the mine, and then incur additional cost to remove it
from the mine via the gob gas ventholes. Finally, for those
mining operations capturing gob gas for commercial sale,
it is very important to maintain as high a methane
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Fig. 22. Methane concentrations measured in the gas production
stream from two gob gas ventholes completed to different depths
above the Pittsburgh coalbed on the same longwall panel at a mine site
close to the study site.



concentration as possible in the produced gas stream, or
additional expenses will be incurred to remove the non-
hydrocarbon gases prior to selling it to the pipeline.

7. Summary and conclusions

A comiprehensive “dynamic” reservoir model of a multi-
panel longwall mine site operating in Pittsburgh coalbed
was constructed. In the model construction, various mining
and reservoir conditions were taken into account. A re-
treating longwall face was modeled using 15 different
“restart” models. Models were run based on a schedule
built from the actual longwall face advance and gob gas
venthole production histories. The reservoir response to the
stresses induced by longwall mining and the resultant
permeability changes were computed by geomechanical
models and were coupled with the reservoir model to
simulate the reservoir property changes during mining,

The “dynamic” model was calibrated with a history
matching procedure that compared model predictions with
field observations of gas production rate and methane
concentrations from each gob gas venthole on the panels.
Using the developed model, gas emission sources, gas flow
paths, and various gob gas venthole completion designs
were investigated. Some of the results may be site-specific
and may be applicable mainly to the study mine site and
pethaps to other mines operating in the Pittsburgh coalbed.
However, the results offer some generalization in under-
standing and predicting the effect of various completion
changes on gas production from gob gas ventholes.

The following summarizes the general conclusions of
this study:

(1) The model demonstrated that gob gas production
characteristics from the coalbeds and other gas-
bearing formations are affected by subsidence. For
the study site, the Sewickley coalbed was a major
contributor to the gob gas venthole production and
for gob gas flow to the mine.

(2) Keeping the other completion parameters constant,
increasing the gob gas venthole diameter increased
cumulative methane production from the subsided
strata. Although a marginal decrease in the methane
concentration was evident from this completion
change, possibly due to increased mine-air extrac-
tion with a larger sink, the increased gas flow rate
increased the overall volume of methane produced,
when a larger diameter was used.

(3) Longer sections of slotted casing produce more gas,
and thos more methane. In this stody, it was
predicted that methane production with 76.2 m
(250 ft) of slotted casing was 9.5% greater than it

was for the standard 61 m (200 ft) of slotted casing.
However, when the slotted casing length was
shortened to 30.5 m (100 ft), the methane produc-
tion decreased by about 23% compared to the
production with the original length.

(4) Casing setting depth plays an important role on the
amount and concentration of methane captured.
Modeling results showed that when the setting
depth was close to or within the caved zone, the
methane concentration in the produced and total
amount of methane capture decreased. In this study,
commputations showed that increased casing sefting
heights above the mined coalbed resulted in more
cumulative methane production. When the casing
setting depth was increased to 19.8 m (65 fi) above
the Pittsburgh coalbed, the cumulative methane
production increased by about 4% compared to the
original base case scenario. Similarly, cumulative
methane production decreases of about 5% and
29% were caleulated when the casing was lowered
to depths of 7.3 m (25 ft) and 4.6 m (15 ft) above the
top of the Pittsburgh coalbed.

Ome additional consideration for changing the setting
depth for the slotted casing may be the competency and
productivity of the formations surrounding the slotted
casing. For example, if the mechanical properties of
immediate strata above the coalbed at one site are
different from those at another site (for example caused
by the presence of a sand channel), a different caving
height and fracturing height may be expected as a result
of longwall mining. Thus, the slotted casing setting
depth may need to be adjusted accordingly. Similarly, if
there are layers with appreciable gas emission potential
(such as thin rider coalbeds) into the mine, this may also
be a consideration to capture the optimum amount of gas
by changing the setting depth of slotted casing.
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Figure 14. A vertical cross section of the subsided strata reservoir over the
headgate side of H panel and the Pittsburgh coalbed layer 630 days after the
start of mining on the adjacent G panel. The methane mole percent data
show that the methane concentration is high in gas emission from Sewickley
coalbed and this coalbed seems the primary source of longwall gob gas in

this region.
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Figure 15. A vertical section of the subsided strata reservoir over the | panel
tailgate after 630" day since the start of mining. This figure shows two |
panel gob gas ventholes and their effect in reducing methane concentrations
within their effective radius and the sheared zone below the Sewickley
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Sewickley coalbed is the primary source of gas captured by the gob gas
ventholes, since they are the closest pressure sink acting upon this gas
source. This observation also suggests that the methane emissions from
Sewickley coalbed may enter directly to the ventilation system if these wells

do not operate continuously, and effectively.)



References

Bruner, K.R., Oldham, A.V., Repine, T.E., Markowski, A.K., Harper,
J.A., 1995. Geological aspects of coalbed methane in the Northern
Appalachian Coal Basin. Southwestern Pennsylvania and North—
Central West Virginia Topical Report (August 1990—August
1993). Gas Research Institute, Chicago, Illinois, p. 72.

Brunner, D.J., 1985. Ventilation models for longwall gob leakage
simulation. Proceedings of 2nd US Mine Ventilation Symposium,
Reno, Nevada, September 23-25, pp. 655—663.

Computer Modeling Group Ltd., 2003. Generalized Equation of State
Model-GEM. User’s Guide, Calgary, Alberta, Canada.

Diamond, W.P., 1994. Methane control for underground coal mines.
Bureau of Mines, Information Circular No: 9395.

Diamond, W.P., Schatzel, S.J., 1998. Measuring the gas content of
coal: a review. International Journal of Coal Geology 35, 311-331.

Diamond, W.P., La Scola, J.C., Hyman, D.M., 1986. Results of direct-
method determination of the gas content of the US coalbeds.
Bureau of Mines, Information Circular No: 9067.

Diamond, W.P., Ulery, J.P., Kravitz, S.J., 1992. Determining the source
of longwall gob gas: Lower Kittanning Coalbed, Cambria County,
PA. Bureau of Mines, Information Circular No: 9430.

Diamond, W.P., Jeran, P.W., Trevitz, M.A., 1994. Evaluation of
alternative placement of longwall gob gas ventholes for optimum
performance. Bureau of Mines, Information Circular No: 9500.

Dolinar, D., 2003. Variation of horizontal stresses and strains in mines
in bedded deposits in the Eastern and Midwestern United States.
Proc. 22nd Int. Conf. Ground Control in Mining, Morgantown,
West Virginia, pp. 178—185.

Ertekin, T., Sung, W., Schwerer, F.C., 1988. Production performance
analysis of horizontal drainage wells for the degasification of coal
seams. Journal of Petroleum Technology 625-631.

Esterhuizen, G., Karacan, C.0., 2005. Development of numerical
models to investigate permeability changes and gas emission
around longwall mining panels. Proc. Alaska Rocks 2005, 40th US
Symposium on Rock Mechanics, Anchorage, Alaska, 25-26 June.

Hoek, E., Bray, J.W., 1981. Rock Slope Engineering. Inst. Mining and
Metall, London.

Hunt, A.M., Steele, D.J., 1991. Coalbed methane development in the
Appalachian Basin. Quarterly Review of Methane from Coal
Seams Technology 1 (4), 10—19.

Itasca Consulting Group, Inc., 2000. FLAC—Fast Lagrangian
Analysis of Continua. User’s Guide. Minneapolis, Minnesota.
Karacan, C.0., Diamond, W.P., Esterhuizen, G.S., Schatzel, S., 2005.

Numerical analysis of the impact of longwall panel width on
methane emissions and performance of gob gas ventholes. Proc.
2005 International Coalbed Methane Symposium, Paper 0505.

Tuscaloosa, AL. 18—19 May.

King, G., Ertekin, T., 1991. State of the art modeling for unconven-
tional gas recovery. SPE Formation Evaluation 63-72.

Law, B.E., 1993. The relationship between coal rank and cleat
spacing: implications for the prediction of permeability in coal.
Proc. 1993 Coalbed Methane Symposium. Tuscaloosa, AL,
May 17-21, pp. 435-441.

Lowndes, 1.S., Reddish, D.J., Ren, T.X., Whittles, D.N., Hargreaves,
D.M., 2002. Improved modeling to support the prediction of gas
migration and emission from active longwall panels. In: De Souza,
Euler (Ed.), Mine Ventilation. Balkema, pp. 267-272.

Lunarzewski, L., 1998. Gas emission prediction and recovery in
underground coal mines. International Journal of Coal Geology 35,
117-145.

McCulloch, C.M., Deul, M., Jeran, P.W., 1974. Cleat in bituminous
coalbeds. US Bureau of Mines, Information Circular No: 7910.

Molinda, G.M., Mark, C., 1996. Rating the strength of coal mine roof
rocks. US Bureau of Mines Information Circular No: 9444.

Mucho, T.P., Diamond, W.P., Garcia, F., Byars, J.D., Cario, S.L., 2000.
Implications of recent NIOSH tracer gas studies on bleeder and
gob gas ventilation design. Society of Mining Engineers Annual
Meeting, Feb. 28—Mar. 1, Salt Lake City, UT.

Noack, K., 1998. Control of gas emissions in underground coal mines.
International Journal of Coal Geology 35, 57-82.

Palchik, V., 2003. Formation of fractured zones in overburden due to
longwall mining. Environmental Geology 44, 28—38.

Ren, T.X., Edwards, J.S., 2002. Goaf gas modeling techniques to
maximize methane capture from surface gob wells. In: De Souza,
Euler (Ed.), Mine Ventilation, pp. 279-286.

Rusnak, J.A., Mark, C., 1999. Using the point load test to determine
the uniaxial compressive strength of coal measure rock. Proc. 19th
Int. Conference on Ground Control in Mining, pp. 362-371.

Singh, M.M., Kendorski, F.S., 1981. Strata disturbance prediction for
mining beneath surface water and waste impoundments. Proc. 1st
Conference on Ground Control in Mining, pp. 76—89.

Tomita, S., Deguchi, G., Matsuyama, S., Li, H., Kawahara, H., 2003.
Development of a simulation program to predict gas emission based
on 3D stress analysis. 30th International Conference of Safety in
Mines Research Institutes. South African Institute of Mining and
Metallurgy, pp. 69—76.

Young, G.B.C., McElhiney, J.E., Paul, G.W., McBane, R.A., 1991. An
analysis of Fruitland Coalbed methane production. Paper No 22913.
Proc. 68th Society of Petroleum Engineers Annual Technical
Conference and Exhibition, pp. 263—279.

Young, G.B.C., Paul, G.W.,, Saulsberry, J.L., Schraufnagel, R.A., 1993. A
simulation-based analysis of multiseam coalbed well completions.
Paper No 26628. Proc. 68th Society of Petroleum Engineers Annual
Technical Conference and Exhibition, pp. 205-215.

Zuber, M.D., 1997. Application of coalbed methane reservoir simulators
for estimation of methane emissions in longwall mining. Proc. 6th
International Mine Ventilation Congress, May 17-22, Pittsburgh,
Pennsylvania, pp. 435—-440.

Zuber, M.D., 1998. Production characteristics and reservoir analysis of
coalbed methane reservoirs. International Journal of Coal Geology
38, 27-45.

Zuber, M.D., Sawyer, W.K., Schraufnagel, R.A., Kuuskraa, V.A.,
1987. The use of simulation and history matching to determine
critical coalbed methane reservoir properties. Paper No 16420.
Proc. SPE/DOE Low Permeability Reservoirs Symposium,
Denver, Colorado, 18—19 May, pp. 307-316.



	OA_153270_1.pdf
	Reservoir simulation-based modeling for characterizing longwall methane emissions and gob gas v.....
	Introduction
	Longwall gob gas ventholes
	Modeling approach for optimizing gob gas venthole performance

	Objective and description of this study
	General description of the study area and the mine
	Reservoir model development for longwall mining
	Grid model of the study area
	Gob gas ventholes and the pseudo-ventilation system
	Reservoir characterization and data sources
	Geomechanical modeling of permeability changes
	Scheduling of runs for “dynamic” reservoir modeling for longwall mining

	Model calibration through history matching
	Results and discussion
	Characterization of methane emission sources in relation to longwall mining
	Effects of gob gas venthole completion practices on production
	Effect of slotted casing diameter
	Effect of slotted casing length
	Effect of slotted casing setting depth


	Summary and conclusions
	Acknowledgements
	Supplementary data
	References


	OA_153270_2.pdf
	Reservoir simulation-based modeling for characterizing longwall methane emissions and gob gas v.....
	Introduction
	Longwall gob gas ventholes
	Modeling approach for optimizing gob gas venthole performance

	Objective and description of this study
	General description of the study area and the mine
	Reservoir model development for longwall mining
	Grid model of the study area
	Gob gas ventholes and the pseudo-ventilation system
	Reservoir characterization and data sources
	Geomechanical modeling of permeability changes
	Scheduling of runs for “dynamic” reservoir modeling for longwall mining

	Model calibration through history matching
	Results and discussion
	Characterization of methane emission sources in relation to longwall mining
	Effects of gob gas venthole completion practices on production
	Effect of slotted casing diameter
	Effect of slotted casing length
	Effect of slotted casing setting depth


	Summary and conclusions
	Acknowledgements
	Supplementary data
	References





